Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 12

The Rank of a Matrix and Matrix Inverses

- 1. Label the following statements as true or false.
 - (a) The rank of a matrix is equal to the number of its nonzero columns.
 - (b) The product of two matrices always has rank equal to the lesser of the ranks of the two matrices.
 - (c) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0.
 - (d) Elementary row operations preserve rank.
 - (e) Elementary column operations do not necessarily preserve rank.
 - (f) The rank of a matrix is equal to the maximum number of linearly independent rows in the matrix.
 - (g) The inverse of a matrix can be computed exclusively by means of elementary row operations.
 - (h) The rank of an $n \times n$ matrix is at most n.
 - (i) An $n \times n$ matrix having rank n is invertible.
- 2. Find the rank of the following matrices.

a)	$ \left(\begin{array}{c} 1\\ 2\\ 1 \end{array}\right) $	1 1 1	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$				ł)	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	2 4	1 2)	
c)	$\left(\begin{array}{c}1\\1\\0\\1\end{array}\right)$	2 4 2 0	$3 \\ 0 \\ -3 \\ 0$	1 1 0 0	$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$		C	d)	$ \left(\begin{array}{c} 1\\ 2\\ 1\\ 1 \end{array}\right) $	1 2 1 1	0 0 0 0	1) 2 1 1 ,	$\Big)$

- 3. Prove that for any $m \times n$ matrix A, rank(A) = 0 if and only if A is the zero matrix.
- 4. Use elementary row and column operations to transform each of the following matrices into a matrix *D* satisfying the conditions of Theorem 3.6, and then determine the rank of each matrix.

(a)
$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 2 & 0 & -1 & 2 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & 1 \\ -1 & 2 \\ 2 & 1 \end{pmatrix}$

5. For each of the following matrices, compute the rank and the inverse if it exists.

a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & -2 & 4 \\ 1 & 1 & -1 \\ 2 & 4 & -5 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(1 0 1 1)
d) $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 5 & 1 \\ -2 & -3 & 0 & 3 \\ 3 & 4 & -2 & -3 \end{pmatrix}$

$$e) \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 2 \\ 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & -3 \end{array} \right)$$

- 6. For each of the following linear transformations *T*, determine whether *T* is invertible, and compute T^{-1} if it exists.
 - (a) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(f(x)) = f''(x) + 2f'(x) f(x).
 - (b) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(f(x)) = (x+1)f'(x).
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(a_1, a_2, a_3) = (a_1 + 2a_2 + a_3, -a_1 + a_2 + 2a_3, a_1 + a_3)$$

(d) $T : \mathbb{R}^3 \to P_2(\mathbb{R})$ defined by

$$T(a_1, a_2, a_3) = (a_1 + a_2 + a_3) + (a_1 - a_2 + a_3)x + a_1x^2$$

- (e) $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ defined by T(f(x)) = (f(-1), f(0), f(1)).
- (f) $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^4$ defined by

$$T(A) = (tr(A), tr(A^{t}), tr(EA), tr(AE)),$$

where

$$E=\left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right).$$

7. Express the invertible matrix

$$\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

as a product of elementary matrices.

8. Let *A* be an $m \times n$ matrix. Prove that if *c* is any nonzero scalar, then rank(cA) = rank(A).

9. Let

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & B' & \\ 0 & & & \end{pmatrix},$$

where *B*' is an $m \times n$ submatrix of *B*. Prove that if rank(B) = r, then rank(B') = r - 1.

10. Let *B*' and *D*' be $m \times n$ matrices, and let *B* and *D* be $(m + 1) \times (n + 1)$ matrices respectively defined by

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & B' & \\ 0 & & & \end{pmatrix} \text{ and } D = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & D' & \\ 0 & & & \end{pmatrix}.$$

Prove that if B' can be transformed into D' by an elementary row [column] operation, then B can be transformed into D by an elementary row [column] operation.

- 11. Let $T, U : V \to W$ be linear transformations.
 - (a) Prove that $R(T + U) \subseteq R(T) + R(U)$. (See the definition of the sum of subsets of a vector space on page 22.)
 - (b) Prove that if *W* is finite-dimensional, then $rank(T + U) \le rank(T) + rank(U)$.
 - (c) Deduce from (b) that $rank(A + B) \le rank(A) + rank(B)$ for any $m \times n$ matrices A and B.
- 12. Suppose that *A* and *B* are matrices having *n* rows. Prove that M(A|B) = (MA|MB) for any $m \times n$ matrix *M*.
- 13. Prove that if *B* is a 3×1 matrix and *C* is a 1×3 matrix, then the 3×3 matrix *BC* has rank at most 1. Conversely, show that if *A* is any 3×3 matrix having rank 1, then there exist a 3×1 matrix *B* and a 1×3 matrix *C* such that A = BC.
- 14. Let *A* be an $m \times n$ matrix and *B* be an $n \times p$ matrix. Prove that *AB* can be written as a sum of *n* matrices of rank at most one.
- 15. Let *A* be an $m \times n$ matrix with rank *m* and *B* be an $n \times p$ matrix with rank *n*. Determine the rank of *AB*. Justify your answer.

16. Let

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 & 1 \\ -1 & 1 & 3 & -1 & 0 \\ -2 & 1 & 4 & -1 & 3 \\ 3 & -1 & -5 & 1 & -6 \end{pmatrix}$$

- (a) Find a 5×5 matrix *M* with rank 2 such that AM = O, where *O* is the 4×5 zero matrix.
- (b) Suppose that *B* is a 5×5 matrix such that AB = O. Prove that $rank(B) \le 2$.
- 17. Let *A* be an $m \times n$ matrix with rank *m*. Prove that there exists an $n \times m$ matrix *B* such that $AB = I_m$.
- 18. Let *B* be an $n \times m$ matrix with rank *m*. Prove that there exists an $m \times n$ matrix *A* such that $AB = I_m$.